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Abstract
A simple pseudo-Hamiltonian formulation is proposed for the linear
inhomogeneous systems of ODEs. In contrast to the usual Hamiltonian
mechanics, our approach is based on the use of a non-stationary Poisson
bracket, i.e. the corresponding Poisson tensor is allowed to explicitly depend
on time. Starting from this pseudo-Hamiltonian formulation, we develop
a consistent deformation quantization procedure involving a non-stationary
star-product ∗t and an ‘extended’ operator of time derivative Dt = ∂t + · · · ,
differentiating the ∗t -product. As in the usual case, the ∗t -algebra of physical
observables is shown to admit an essentially unique (time-dependent) trace
functional Trt . Using these ingredients, we construct a complete and fully
consistent quantum-mechanical description for any linear dynamical system
with or without dissipation. The general quantization method is exemplified
by the models of damped oscillator and radiating point charge.

PACS numbers: 02.30.Hq, 45.20.Jj

1. Introduction

The problem of a quantum-mechanical description of dissipative systems has remained, for
decades, a recurrently discussed physical topic with a number of important applications (see
[1–17] and references therein). It also has some theoretical importance as a touchstone
for testing various quantization methods. Our interest in the problem is inspired by recent
developments in deformation quantization [18]. In this paper, we consider the problem of
deformation quantization for dissipative systems, whose classical dynamics is specified by
linear inhomogeneous systems of ODEs.

In spite of a large number of papers devoted to the quantum-mechanical treatment of
various dissipative systems, there is no commonly accepted definition of the dissipation
phenomenon itself. It seems that the most characteristic property of the dissipation, shared
by all the systems known as dissipative, is the presence of attractors [19]. Recall that an
attractor A ⊂ M is a compact, measure-zero subset in the phase space of the system M,
possessing the property of being limiting set for any trajectory passing through a sufficiently
small neighbourhood of A. In a simple situation the attractor is just a stable fixed point
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(sink) or a closed curve (limit cycle); in the general case, however, much more complicated
dissipative structures may occur (e.g. strange attractors).

From the Liouville theorem about the conservation of phase-space volume [20], it follows
immediately that no smooth compatible symplectic structure can exist in the vicinity of an
attractor: as the measure of the attractor is zero, the Liouville volume form, given by the
Pfaffian of the symplectic 2-form, becomes necessarily infinite at the points of the attractor.
The attractors are thus obstructions for constructing the conventional Hamiltonian description
of the dissipative systems and this is also the reason why the terms ‘dissipative’ and ‘non-
Hamiltonian’ are often used as synonyms.

In principle, the requirement of smoothness of the symplectic structure is not so crucial for
deformation quantization as only the Poisson bracket and a trace density are actually used. The
problem, however, is that even for a linear dissipative system with a one-point attractor (e.g.
focus), the corresponding Poisson bracket appears to be highly nonlinear, making any practical
calculations impossible [21] (see also [27] for a similar discussion of Kepler’s problem).

To get round the ‘no-go theorem’ above and obtain a practicable quantization scheme, we
allow the symplectic structure to depend on time explicitly. The idea is as follows: since the
phase-space trajectories reach the attractor A only asymptotically (as t → ∞), one can try
to construct a time-dependent symplectic structure �(t) which would be a smooth function
of time and such that limt→∞ �(t) = ∞. We show that such a non-stationary symplectic
structure does exist for any linear dynamical system and can be explicitly constructed by
the fundamental matrix of the linear system. Moreover, for one-dimensional dynamical
systems, described by a linear second-order equation, one can always find a time-independent
�, whereas for the general multi-dimensional system such a choice is impossible. In this
respect the one-dimensional dissipative systems, such as the damped linear oscillator, are not
indicative examples.

The unavoidable time dependence of multi-dimensional symplectic structures has further
consequences for nearly Hamiltonian systems, i.e. systems whose equations of motion have
the form of a small perturbation over the Hamiltonian ones. No matter how small the
value of the perturbation is, the perturbed equations may no longer be Hamiltonian, which
indicates the presence of genuine dissipation. It is still possible, however, to construct the
first-order action functional if one admits a non-stationary symplectic structure; in so doing,
the explicit time dependence of � can violate any phase-space polarization [22] (e.g., this may
admit no separation of the variables into position coordinates and conjugate momenta) making
impossible the passage to the second-order Lagrangian formalism. The absence of the second-
order Lagrangian description for some classical systems with two or more degrees of freedom
was recognized long ago [23–25]. For a nearly Hamiltonian system it is reasonable to require
the Lagrangian, if any, to pass into the non-perturbed one as the parameter of dissipation
(e.g. friction constant) vanishes. The last requirement imposes a very strong restriction on
physically reasonable Lagrangians. For example, in [21] we have described all the second-
order Lagrangians for the reduced Lorentz–Dirac equation in the case of a homogeneous
magnetic field, but none of them reproduces the free particle motion as the charge of the
particle tends to zero. The last fact clearly shows the advantage of the first-order formalism
over the second-order one. For the general discussion on peculiarities of the inverse problem
of variational calculus in the first-order formalism, we refer the reader to [26].

The absence of a phase-space polarization also favours the use of deformation quantization
over the canonical quantization procedure. Being a function of time, but not of the phase-space
coordinates, the corresponding Poisson bracket can easily be quantized by the usual Weyl–
Moyal formula giving rise to a non-stationary star-product ∗t . This is the point where our
approach deviates from the conventional scheme of deformation quantization [27, 28]. Note
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that in the non-stationary case, the usual time derivative does not differentiate the ∗t -product
of quantum observables; instead one can define an extended time derivative Dt = ∂t + · · · that
would be compatible with the ∗t -product in the sense of the Leibnitz rule. As in the usual
case, the ∗t -algebra of quantum observables is shown to admit an essentially unique (non-
stationary) trace functional Trt . Using these ingredients, we define the quantum Liouville
equation governing the evolution of quantum-mechanical states, as well as the rule for
computing the expectation values of physical observables. As a result we get a complete
quantum-mechanical description for any linear dynamical system. Moreover, the physical
content of the theory is shown to be independent of any ambiguities concerning the choice
of the non-stationary symplectic structure �(t) as the quantum Liouville equation coincides
precisely with the classical one (see proposition 1). Note that several objections have been
published for many years against the possibility of consistently quantizing such systems in the
Hamiltonian framework, even in principle, see e.g. [14–17].

By way of illustration, we consider the quantization problem for the damped linear
oscillator and for the radiating point charge moving in a homogeneous magnetic field. In both
cases, the quantum dynamics seems very reasonable. In particular, the time evolution of mean
energy, defined in terms of the corresponding unperturbed system, is shown to coincide with
the evolution of the classical energy.

2. Pseudo-Hamiltonian formulation of linear dynamical systems

We start with an inhomogeneous linear system of ODEs

ẋi = Ai
j (t)x

j + J i(t) (1)

defined on a linear phase space with coordinates xi . Hereafter, the overdot stands for the
derivative with respect to time t. When A and J are independent of time, one speaks of an
autonomous system of ODEs. In this paper, we are interested in linear dynamical systems
which are a (small) perturbation of a Hamiltonian one. Although the perturbed system may
no longer be a Hamiltonian one1, the number of degrees of freedom remains the same. In
particular, we will always assume the phase space of the system (1) to be even dimensional,
i.e. i = 1, . . . , 2n.

Our first observation is that any such system can be derived from the variation principle
for a quadratic action functional if the explicit time dependence is admitted in the integrand.
Consider the following ansatz:

S[x] = 1

2

∫
dt (xi�ij (t)ẋ

j − xiBij (t)x
j − 2Ci(t)x

i), (2)

where

�ij = −�ji, Bij = Bji, det(�ij ) �= 0. (3)

Structurally, the functional S is similar to the first-order action associated with the Hamiltonian

H = 1
2xiBij (t)x

j − Ci(t)x
i, (4)

but unlike the usual Hamiltonian formalism, we allow the symplectic form � to depend on
time. This assumption appears to be crucial for the description of multi-dimensional dissipative
systems as will be seen below.

Varying this action functional, we arrive at the following equations2:
δS

δxi
= 0 ⇔ ẋ = �−1

(
B − 1

2
�̇

)
x + �−1C. (5)

1 In this case, the perturbation cannot be induced by a perturbation of the Hamiltonian.
2 Here we use the matrix notation.
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In order for these equations to be equivalent to the original ones (1) we must set

A = �−1
(
B − 1

2 �̇
)
, J = �−1C, (6)

or, which is the same,
1
2 �̇ = B − �A, C = �J. (7)

Decomposing the first matrix equation into symmetric and anti-symmetric parts, we finally
get

�̇ = −(�A + At�), B = 1
2 (�A − At�), C = �J, (8)

with At being the transpose of the matrix A. Only the first relation is non-trivial (it is a linear
ODE on �), while the other two are just definitions of the matrices B and C.

Recall that the square matrix �(t) is called the fundamental solution to the system (1) if

�̇ = A�, �(0) = 1. (9)

The columns of this matrix constitute the basis in the linear space of solutions to equations (1).
Given the matrix �, the general solution to the first equation (8) can be written as

� = �t�0�, (10)

where � = �−1, and �0 = −�t
0 is a constant non-degenerate matrix. The matrix �0 encodes

all the ambiguity in the definition of quadratic action functional (2) for the given system of
ODEs (1).

In the autonomous case, the system (1) is explicitly integrable in elementary functions
and hence the action (2) can be written in closed form. By way of illustration let us consider
two physical examples: the damped linear oscillator, and the non-relativistic motion of a point
charge with a due regard for the radiation back reaction.

Example 1. The equation describing the linear oscillator with friction reads

ẍ + 2αx + ω2x = 0. (11)

Here ω is the frequency and α � 0 is the coefficient of friction. Introducing the auxiliary
variable

p = ẋ + αx√
1 − α2/ω2

,

one can replace (11) with the following pair of first-order equations:

ẋ = p
√

1 − α2/ω2 − αx, ṗ = −ω2x
√

1 − α2/ω2 − αp. (12)

According to (2) and (8), the action functional to this system is given by

S[x, p] = c

∫
dt

(
pẋ − 1

2

√
1 − α2/ω2(p2 + ω2x2) + αpx

)
e2αt , (13)

with c being an arbitrary constant. In the regime of aperiodic damping (α > ω), the action
functional becomes complex.

In this simple case it is also possible to construct a first-order action functional involving
the canonical symplectic structure. For example, varying the action

S[x, p] =
∫

dt

(
pẋ − 1

2
(e−αtp2 + ω2 eαtx2)

)
, (14)

one gets the Hamiltonian equations

ẋ = e−αtp, ṗ = −ω2 eαtx, (15)
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which are obviously equivalent to equation (11). Note that, contrary to the system (12), the
stationary point x = p = 0 of (15) is not an attractor.

It is significant that both (13) and (14) come to the standard Hamiltonian action for the
harmonic oscillator when α → 0. Since the action functional carries all the information
about classical and quantum dynamics, the last fact makes possible a consistent interpretation
of friction as a small perturbation over the given Hamiltonian system, rather than something
leading to a completely different physical system.

Example 2. The effective dynamics of a non-relativistic charged particle is governed by the
Lorentz equation [29]

mẍ = eE +
e

c
[ẋ, H] +

2e2

3c3

...
x . (16)

Here x(t) ∈ R
3 is a trajectory of the particle, E and H are 3-vectors of electric and magnetic

fields, respectively, and the constants c and e denote the light velocity and electric charge of
the particle, respectively. As is seen, the Lorentz equation involves the third time derivative
of the trajectory. It is the term which describes the back reaction of the radiation emitted by
the accelerating charge. Since the order of the equation is greater than 2, it cannot be assigned
with a straightforward mechanical interpretation: in the realm of Newtonian mechanics, a
trajectory of a scalar particle is uniquely specified by initial position and velocity. Besides,
together with physically meaningful solutions, equation (16) allows a set of non-physical ones
[29]. It turns out that both mentioned problems can be resolved by means of the reduction of
order procedure (see e.g. [21, 29, 30]). Namely, equation (16) is replaced by a second-order
equation ẍ = g(x, ẋ, e) such that all the solutions to the latter would solve the former. The last
requirement leads to a partial differential equation on the function g(x, v, e) having a unique
solution with g(x, v, 0) = 0.

Consider for example a non-relativistic particle moving in a homogeneous magnetic field,
i.e. E = 0, H = (0, 0,H) and H = const. The reduced Lorentz equation has the form [21]

ẍ = Aẋ − Bẏ, ÿ = Bẋ + Aẏ, z̈ = 0,

where x = (x, y, z) and

A = 6 − √
6
√

3 +
√

9 + 64e6H 2

8e2
≈ −2

3
e4H 2, B = eH

√
6√

3 +
√

9 + 64e6H 2
≈ eH. (17)

Here we have set m = c = 1. Since the evolution along z represents the free motion and
decouples from the dynamics in the xy-plane, we restrict our consideration to the first two
equations.

Setting formally A = 0, we arrive at the usual Lorentz equations describing the motion
of a charge in response to the ‘effective’ magnetic field B = (0, 0, B/e). In this case, the
trajectories are concentric circles. For A �= 0 the particle spirals at the origin of xy-plane. So,
it is natural to regard A as the coefficient of friction.

In order to construct an action functional for the second-order equations (17), we replace
them with an equivalent system of first-order ones. Let us choose the auxiliary variables as

p = ẋ +
B

2
y, q = ẏ − B

2
x. (18)

Then

ẋ = p − B

2
y, ẏ = q +

B

2
x,

ṗ = −B

2
q − B2

4
x + A

(
p − B

2
y

)
, q̇ = B

2
p − B2

4
y + A

(
q +

B

2
x

)
.

(19)
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Applying the general formulae (2) and (8), we arrive at the following expression for the
first-order action functional:

S[x, y, q, p] = 1

4(A2 + B2)

∫
dt e−At [2a(t)(pẋ − xṗ + qẏ − yq̇)

+ 2b(t)(qẋ − xq̇ + yṗ − pẏ) + 2c(t)(pq̇ − qṗ) + 2d(t)(xẏ − yẋ)

+ e(t)(p2 + q2) + f (t)(x2 + y2) + g(t)(px + qy) + j (t)(qx − py)], (20)

where

a(t) = A2 cos(Bt) + 1
2B2(e−At + eAt ),

b(t) = A2 sin(Bt) − AB eAt + AB cos(Bt),

c(t)= e−AtB + 2A sin(Bt),

d(t)= 1
4B3(e−At − eAt )− 1

2B2A sin(Bt) + A2B(cos(Bt)− eAt ),

e(t) = e−AtB2 + A2 cos(Bt) + A sin(Bt)B,

f (t) = 1
4B(B3 e−At + BA2 cos(Bt) − A sin(Bt)[B2 + 2A2]),

g(t) = −A cos(Bt)B2 − A3 cos(Bt),

j (t) = −A3 sin(Bt) + e−AtB3 + A2B cos(Bt).

In the limit of zero friction A → 0, this action tends to the usual action for the charged particle
in a homogeneous magnetic field B.

Note that the symplectic structure entering the Lagrangian (20) does not possess
xy-polarization (i.e. the 2-form � does not vanish upon restriction on the 2-plane x =
const, y = const) when A �= 0. This makes impossible the algebraic elimination of p and q
from the action (24) and thus obtaining a second-order action in terms of x and y. The latter
fact agrees well with the general statement of [21] about the non-existence of a second-order
action functional for equation (17), which would pass to the standard action functional for a
free particle when e → 0.

It can also be shown that, unlike the previous example, the system (17) does not admit
a first-order action involving a stationary symplectic structure and having the standard free
limit. The unavoidable time dependence of the symplectic structure may be thus viewed as a
specific feature of multi-dimensional dissipative systems.

Using the Hamiltonian (4) and the symplectic 2-form �, it is possible to rewrite
equations (1) in a pseudo-Hamiltonian form. To this end we introduce the following non-
stationary Poisson brackets:

{F,G}t = �ij (t)
∂F

∂xi

∂G

∂xj
, � = �−1, (21)

where F and G are functions of the phase-space coordinates xi and the time t. Clearly, these
brackets satisfy all the properties of the Poisson brackets: bi-linearity, skew-symmetry, the
Leibnitz and Jacobi identities. In accordance with (5), the evolution of an arbitrary physical
observable F(t, x) is described by the following equation:

dF

dt
= DtF + {F,H }t , (22)

where

H = 1
2xiBij x

j + Ci(t)x
i (23)

and

DtF ≡ ∂F

∂t
− 1

2
xi�̇ik�

kj ∂F

∂xj
= ∂F

∂t
− 1

2
xi�̇ik{xk, F }t (24)
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is the ‘extended’ partial derivative in t. When � is constant, the last term in (24) vanishes
and we arrive at the conventional Hamiltonian equations w.r.t. the canonical Poisson brackets
and the Hamiltonian (23). The main property of the extended time derivative Dt is that it
differentiates the non-stationary Poisson brackets (21), i.e.

Dt {F,G}t = {DtF,G}t + {F,DtG}t , (25)

for any F(t, x) and G(t, x). Using this property one can deduce the Poisson theorem:

dF

dt
= 0,

dG

dt
= 0 ⇒ d

dt
{F,G}t = 0 (26)

(the Poisson bracket of two conserved quantities is conserved).
In full analogy with the conventional Hamiltonian mechanics, a state of the system is

described by a classical distribution function ρcl(x, t) subject to the normalization condition∫
dµρcl(x, t) = 1, (27)

dµ ≡ √
det � d2nx being the Liouville measure associated with the non-stationary symplectic

form �. The time dependence of ρcl(x, t) is determined by the modified Liouville equation
(cf equation (22))

Dtρcl = {H, ρcl}t . (28)

Note that the time evolution preserves the normalization condition (27). Indeed, using the
obvious identity∫

dµ{F,G}t = 0, (29)

where one of the functions F(x) and G(x) vanishes on infinity, one can find

d

dt

∫
dµρcl(x, t) =

(
d ln 


dt
− �̇ij�

ij

) ∫
dµρcl(x, t) = 0, 
 =

√
det �. (30)

The pure states of the classical system correspond to the δ-distributions

ρcl(x, t) = 
−1(t)δ2n(x − x0(t)), (31)

supported on the integral trajectories x0(t) of the system (1).
As a final remark, let us note that the above pseudo-Hamiltonian formalism is applicable

for arbitrary (not necessary quadratic) Hamiltonians and can easily be derived/justified in the
formalism of constrained dynamics [31] applied to the first-order action (2).

3. Deformation quantization of pseudo-Hamiltonian systems

Example 2 of section 1 shows that the most characteristic feature of multi-dimensional
dissipative systems is the lack of a phase-space polarization compatible with dynamics: though
at each time moment t0 one can split the phase-space variables xi = (qa, pb) on ‘coordinates’
and ‘momenta’ satisfying the canonical Poisson bracket relations

{qa, qb}t0 = 0, {pa, pb}t0 = 0, {qa, pb}t0 = δa
b , (32)

these relations may not hold true at the next time moment. This is due to the explicit (and in
many interesting cases unavoidable) time dependence of the symplectic form � entering the
first-order action (2). The absence of a natural polarization favours the use of deformation
quantization over the canonical quantization procedure.

In the approach of deformation quantization, the classical observables (i.e. functions in
the phase-space variables) are identified with symbols of operators [27, 28]; in so doing,
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the pointwise multiplication of functions is replaced by an associative non-commutative star-
product. Using the non-stationary Poisson bracket (21), we define the time dependent ∗t -
product by the usual Weyl–Moyal formula

(F ∗t G)(x, t) ≡ exp

(
ih̄

2
�ij (t)

∂2

∂xi∂yj

)
F(t, x)G(t, y)|x=y

= F · G +
ih̄

2
{F,G}t + O(h̄2). (33)

It is clear that the time dependence of � does not affect the associativity of the Weyl–Moyal
star-product, so we have

(F ∗t G) ∗t H = F ∗t (G ∗t H ), ∀F,G,H ∈ C∞(R2n). (34)

In order to define the notion of a quantum state we endow the ∗t -algebra with the following
trace functional:

Trt (F ) = 1

(2πh̄)n

∫
dµF(x). (35)

The basic property of the trace (specifying it up to multiplication on an arbitrary function
of t) is vanishing on ∗t -commutators, i.e.

Trt ([F,G]t ) = 0, (36)

where [F,G]t ≡ F ∗t G − G ∗t F and at least one of the functions F and G vanishes on the
infinity together with all its derivatives. Actually, the identity (36) follows from the stronger
one: Trt (F ∗t G) = Trt (F · G).

A pure state of a quantum mechanical system is described by a Wigner function ρ(t, x)

subject to the following conditions:

ρ ∗t ρ = ρ, Trt (ρ) = 1. (37)

The quantum counterpart of the classical Liouville equation, governing the evolution of a
quantum state, reads

ih̄Dtρ + [ρ,H ]t = 0, (38)

where the extended time derivative Dt , defined by equation (24), can also be written as

DtF ≡ ∂F

∂t
− 1

4ih̄
�̇ij (x

i ∗t [xj , F ]t + [xj , F ]t ∗t xi). (39)

Note that equation (38) makes sense for an arbitrary (not necessary quadratic) Hamiltonian.
For a constant Poisson bracket, (38) reproduces the usual von Neumann’s equation for the
symbol of statistical operator ρ. A simple direct calculation shows that the operator Dt

differentiates the ∗t -product:

Dt(F ∗t G) = (DtF ) ∗t G + F ∗t (DtG). (40)

As a consequence, every solution to equation (38), satisfying the idempotency condition (37)
at some initial time moment, will satisfy this condition in all subsequent time moments. The
specific choice of the integration measure in the definition of trace functional (35) provides
the conservation of the normalization condition (37). Indeed, using the evolution equation for
ρ and the property (36), one can find

d

dt
Trt (ρ(t)) =

(
d ln 


dt
− �̇ij�

ij

)
Trt (ρ(t)) = 0. (41)

This property specifies the form of the trace functional up to an overall constant.
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In the Schrödinger picture3, the physical observables are considered to be chosen once
and for all at some initial time moment, say t = 0. Only the quantum states evolve according
to equation (38). The expectation value of an observable F(x) at the time moment t relative
to a state ρ(t) is given by

〈F 〉tρ = Trt (F (x) ∗t ρ(t, x)), (42)

where the Wigner function ρ obeys equation (37).
For quadratic Hamiltonians, equation (38) coincides with the modified Liouville

equation (28). In that case, the evolution of an arbitrary quantum state ρ is governed by
the linear first-order PDO

∂ρ

∂t
− 1

2
xi�̇ij {xj , ρ} + {ρ,H } = 0,

for which the initial classical equations (1) play the role of characteristics. So, we arrive at
the following.

Proposition 1. Let xi(t) = �i
j (t)x

j

0 + vi(t) be the general solution to the classical equations
of motion (1) with xi(t)|t=0 = xi

0, then the evolution of a quantum state ρ(t, x) is given by the
expression

ρ(t, x) = ρ0(�(t)[x − v(t)]),

where �(t) = �−1(t) and the initial state ρ0(x) = ρ(0, x) satisfies equations (37) at t = 0.

Note that the quantum evolution of linear systems is completely determined by the classical
one and does not depend on any ambiguities concerning the choice of the quadratic action
functional (2).

As we mentioned in the introduction, the characteristic feature of dissipation is the
presence of attractors, i.e. invariant subsets A ∈ R

2n to which all nearby trajectories converge.
In other words, any classical state supported at a sufficiently small vicinity of A evolves to
a state supported at A when t → ∞. As the next proposition shows, a similar phenomenon
takes place at the quantum level as well (at least for linear systems with a one-point attractor).

Proposition 2. Given a system of differential equations ẋ = A(t)x having the origin x = 0
as the global attractor, each Wigner’s function ρ(t, x) defines a δ-shaped sequence

φt(x) = 
(t)

(2πh̄)n
ρ(t, x), lim

t→∞ φt(x) = δ(x).

Proof. Since x = 0 is the global attractor limt→∞ x(t) = 0 for any solution x(t). On the
other hand, x(t) = �(t)x0, and hence limt→∞ �(t) = 0. According to proposition 1, for any
compactly supported function F(x) ∈ C∞

0 (R2n) we have∫
F(x)φt (x) d2nx = 
(t)

(2πh̄)n

∫
F(x)ρ0(�(t)x) d2nx = 1

(2πh̄)n

∫
F(�(t)x)ρ0(x) d2nx.

(43)

Taking limit, we finally get

〈F 〉∞ρ = lim
t→∞

1

(2πh̄)n

∫
F(�(t)x)ρ0(x) d2nx = F(0) Tr0(ρ0) = F(0).

Thus, φt(x) is a δ-shaped sequence. �
3 Of course, all the constructions can be straightforwardly reformulated in the Heisenberg picture.
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4. Examples

By way of illustration, let us consider the deformation quantization of two interesting
dissipative systems: the damped linear oscillator and the radiating point charge in a
homogeneous magnetic field. The corresponding classical dynamics has been discussed
in section 2, including the time-dependent Poisson brackets. In both cases, dissipation has the
form of a perturbation over a Hamiltonian system and we choose the basis quantum states as
the eigenstates for the energy (and angular momentum) of the corresponding non-perturbed
system. Using these states, we then consider the evolution for the mean values of energy (and
angular momentum) in the presence of dissipation.

4.1. Damped linear oscillator

Let ρ(x, p) be the Wigner function describing a pure state of the harmonic oscillator (α = 0)

with a definite value of energy E. This amounts to saying that ρ solves the following eigenvalue
problem:

H ∗ ρ = ρ ∗ H = Eρ, ρ ∗ ρ = ρ, ρ̄ = ρ, Tr(ρ) = 1, (44)

where

H = 1
2 (p2 + ω2x2),

and the ∗-product (33) is defined at t = 0 by the canonical Poisson brackets {p, x} = 1. Let
us find ρ from (44) following [27]. The first (complex) equation in (44) is equivalent to the
pair of the real ones

Hρ − h̄2

4

(
ω2 ∂2ρ

∂p2
+

∂2ρ

∂x2

)
= 2Eρ, {H, ρ} = 0. (45)

The second equation implies that

ρ = ρ(H). (46)

Then the first equation yields

Hρ − h̄2

4
(ρ ′′H + ρ ′) = E

ω
ρ. (47)

Introducing new variables

y = 4

h̄ω
H, ρ = e−y/2f,

one can bring equation (47) to the form

f ′′y + (1 − y)f ′ +

(
E

h̄ω
− 1

2

)
f = 0. (48)

This equation is satisfied by Laguerre’s polynomials Ln(y), provided

E = h̄ω
(
n + 1

2

)
, n = 0, 1, 2, . . . , (49)

and these are known to exhaust all its solutions resulting in integrable Wigner’s functions
ρ ∈ L1(R2). Thus, any eigenvalue (49) corresponds to the unique Wigner’s function

ρn(H) = Cn exp

(
− 2H

h̄ω2

)
Ln

(
4H

h̄ω2

)
. (50)
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The constant Cn = (−1)n2/ω is determined from the normalization condition (44). In [27], it
was shown that the sequence {ρn} defines a complete set of orthogonal projectors:

ρn ∗ ρm = δmnρn, δ(x − x ′)δ(p − p′) =
∞∑

n=0

ρn(x, p)ρn(x
′, p′). (51)

Now let us return to the damped linear oscillator with action (13). The time evolution of
the mean energy H can easily be calculated using proposition 1 and formula (42). We have

〈H 〉tρn
= 
(t)

(2πh̄)n

∫
H(x)ρn(�(t)x) d2nx = 1

(2πh̄)n

∫
H(�(t)x)ρn(x) d2nx, (52)

where the initial state ρn is one of the states (50) and �(t) solves equation (12) with �(0) = 1.
Since

H(�(t)ξ) = e−αtH(ξ), ξ = (x, p)t , (53)

we get

〈H 〉tρn
= e−αt

2πh̄

∫
dp dx H ∗ ρn = e−αtEn

2πh̄

∫
dp dx ρn = e−αtEn. (54)

As is seen, the quantum evolution of the mean energy relative to the eigenstates ρn coincides
exactly with the classical one: in both cases the energy decreases by exponential law.

4.2. Particle in a homogeneous magnetic field

Consider the deformation quantization of the system (17). It is convenient to identify the
complete set of observables with the energy H and the angular momentum L of the particle
without friction (A = 0). Then the corresponding set of states with definite values of H and
L is determined by the equations

H ∗ ρ = ρ ∗ H = Eρ, L ∗ ρ = ρ ∗ L = Mρ,

ρ ∗ ρ = ρ, ρ̄ = ρ, Tr(ρ) = 1,
(55)

where E,M ∈ R and

H = 1

2

(
p − B

2
y

)2

+
1

2

(
q +

B

2
x

)2

, L = py − qx. (56)

The ∗-product is defined by formula (33) at t = 0 w.r.t. the canonical Poisson brackets:
{p, x} = {q, y} = 1 and the other brackets vanish.

In order to solve (55) we introduce the following linear canonical transformation
(p, x; q, y) → (P,X;Q,Y):

P = p − B

2
y, X = 1

B

(
q +

B

2
x

)
,

Q = 1

B

(
q − B

2
x

)
, Y = p +

B

2
y

(57)

together with the functions

H1 = P 2 + B2X2, H2 = Q2 + B2Y 2. (58)

It easy to see that

H = H1, L = B−1(H2 − H1). (59)
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Since H1 and H2 are nothing but the Hamiltonians of two independent harmonic oscillators,
we have reduced the eigenvalue problem (55) to the previous one (44). The Wigner functions
solving equation (55) are given by the (ordinary) products

ρE,M = ρn(H1)ρl(H2), (60)

where ρm(H1,2) is defined by (50) with ω = B, and the eigenvalues E and M run through the
sets

E = h̄B
(
n + 1

2

)
, M = h̄(l − n), n, l = 0, 1, 2, . . . . (61)

As is seen, the eigenvalues of the angular momentum L in a state with definite energy E are
bounded from below by −E/B + h̄/2.

Consider now the evolution of the mean values of H and L. Using the fundamental matrix
of (19) and applying proposition 1, we find

H(ξ, t) = H(�(t)ξ) = e2AtH(ξ),

L(ξ, t) = L(�(t)ξ) = L(ξ) + α(t)H(ξ) + β(t)K(ξ) + γ (t)N(ξ),
(62)

where ξ = (x, p, y, q)t and

α(t) = 2A2 eAtcos(Bt) − A2 + B2 e2At

B(B2 + A2)
, K = PQ + XY,

β(t) = 2A2 eAtcos(Bt) + 2A eAtsin(Bt)B − 2A2

B(B2 + A2)
, N = XQ − PY, (63)

γ (t) = 2A2 eAtcos(Bt)B − 2A2 eAtsin(Bt) − 2AB

B(B2 + A2)
.

This gives immediately

〈H 〉tE,M = e2At

(2πh̄)2

∫
d4ξH(ξ) ∗ ρE,M(ξ) = e2AtE

(2πh̄)2

∫
d4ξρE,M(ξ) = e2AtE. (64)

The mean energy of the particle decreases by exponential law just as it behaves in the classical
theory.

The invariance of the Wigner functions ρE,M(ξ) under reversions in PX- and QY -planes
suggests that 〈K〉E,M = 〈N〉E,M = 0, and hence

〈L〉tE,M = Tr0(L(t) ∗ ρE,M) = M − α(t)E. (65)

The same arguments show that

〈x〉tE,M = 〈p〉tE,M = 〈y〉tE,M = 〈q〉tE,M = 0. (66)

So, at each moment of time the measured values of coordinates and momenta relative to the
state ρE,M are equal to zero.

Taking successive limits t → ∞ and A → 0 in (65), we find that the limiting value
of the angular momentum for a small friction |A| � 1 is given by M − E/B. Since
β(t) → 0, γ (t) → 0 as t → ∞, the same limiting value appears in the classical theory as
well.
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